Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Overexpression of CONSTANS homologs CO1 and CO2 fails to alter normal reproductive onset and fall bud set in woody perennial poplar.

Identifieur interne : 002976 ( Main/Exploration ); précédent : 002975; suivant : 002977

Overexpression of CONSTANS homologs CO1 and CO2 fails to alter normal reproductive onset and fall bud set in woody perennial poplar.

Auteurs : Chuan-Yu Hsu [États-Unis] ; Joshua P. Adams ; Kyoungok No ; Haiying Liang ; Richard Meilan ; Olga Pechanova ; Abdelali Barakat ; John E. Carlson ; Grier P. Page ; Cetin Yuceer

Source :

RBID : pubmed:23029015

Descripteurs français

English descriptors

Abstract

CONSTANS (CO) is an important flowering-time gene in the photoperiodic flowering pathway of annual Arabidopsis thaliana in which overexpression of CO induces early flowering, whereas mutations in CO cause delayed flowering. The closest homologs of CO in woody perennial poplar (Populus spp.) are CO1 and CO2. A previous report showed that the CO2/FLOWERING LOCUS T1 (FT1) regulon controls the onset of reproduction in poplar, similar to what is seen with the CO/FLOWERING LOCUS T (FT) regulon in Arabidopsis. The CO2/FT1 regulon was also reported to control fall bud set. Our long-term field observations show that overexpression of CO1 and CO2 individually or together did not alter normal reproductive onset, spring bud break, or fall dormancy in poplar, but did result in smaller trees when compared with controls. Transcripts of CO1 and CO2 were normally most abundant in the growing season and rhythmic within a day, peaking at dawn. Our manipulative experiments did not provide evidence for transcriptional regulation being affected by photoperiod, light intensity, temperature, or water stress when transcripts of CO1 and CO2 were consistently measured in the morning. A genetic network analysis using overexpressing trees, microarrays, and computation demonstrated that a majority of functionally known genes downstream of CO1 and CO2 are associated with metabolic processes, which could explain their effect on tree size. In conclusion, the function of CO1 and CO2 in poplar does not appear to overlap with that of CO from Arabidopsis, nor do our data support the involvement of CO1 and CO2 in spring bud break or fall bud set.

DOI: 10.1371/journal.pone.0045448
PubMed: 23029015
PubMed Central: PMC3446887


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Overexpression of CONSTANS homologs CO1 and CO2 fails to alter normal reproductive onset and fall bud set in woody perennial poplar.</title>
<author>
<name sortKey="Hsu, Chuan Yu" sort="Hsu, Chuan Yu" uniqKey="Hsu C" first="Chuan-Yu" last="Hsu">Chuan-Yu Hsu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forestry, Mississippi State University, Mississippi State, Mississippi, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forestry, Mississippi State University, Mississippi State, Mississippi</wicri:regionArea>
<placeName>
<region type="state">État du Mississippi</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Adams, Joshua P" sort="Adams, Joshua P" uniqKey="Adams J" first="Joshua P" last="Adams">Joshua P. Adams</name>
</author>
<author>
<name sortKey="No, Kyoungok" sort="No, Kyoungok" uniqKey="No K" first="Kyoungok" last="No">Kyoungok No</name>
</author>
<author>
<name sortKey="Liang, Haiying" sort="Liang, Haiying" uniqKey="Liang H" first="Haiying" last="Liang">Haiying Liang</name>
</author>
<author>
<name sortKey="Meilan, Richard" sort="Meilan, Richard" uniqKey="Meilan R" first="Richard" last="Meilan">Richard Meilan</name>
</author>
<author>
<name sortKey="Pechanova, Olga" sort="Pechanova, Olga" uniqKey="Pechanova O" first="Olga" last="Pechanova">Olga Pechanova</name>
</author>
<author>
<name sortKey="Barakat, Abdelali" sort="Barakat, Abdelali" uniqKey="Barakat A" first="Abdelali" last="Barakat">Abdelali Barakat</name>
</author>
<author>
<name sortKey="Carlson, John E" sort="Carlson, John E" uniqKey="Carlson J" first="John E" last="Carlson">John E. Carlson</name>
</author>
<author>
<name sortKey="Page, Grier P" sort="Page, Grier P" uniqKey="Page G" first="Grier P" last="Page">Grier P. Page</name>
</author>
<author>
<name sortKey="Yuceer, Cetin" sort="Yuceer, Cetin" uniqKey="Yuceer C" first="Cetin" last="Yuceer">Cetin Yuceer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23029015</idno>
<idno type="pmid">23029015</idno>
<idno type="doi">10.1371/journal.pone.0045448</idno>
<idno type="pmc">PMC3446887</idno>
<idno type="wicri:Area/Main/Corpus">002863</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002863</idno>
<idno type="wicri:Area/Main/Curation">002863</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002863</idno>
<idno type="wicri:Area/Main/Exploration">002863</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Overexpression of CONSTANS homologs CO1 and CO2 fails to alter normal reproductive onset and fall bud set in woody perennial poplar.</title>
<author>
<name sortKey="Hsu, Chuan Yu" sort="Hsu, Chuan Yu" uniqKey="Hsu C" first="Chuan-Yu" last="Hsu">Chuan-Yu Hsu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forestry, Mississippi State University, Mississippi State, Mississippi, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forestry, Mississippi State University, Mississippi State, Mississippi</wicri:regionArea>
<placeName>
<region type="state">État du Mississippi</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Adams, Joshua P" sort="Adams, Joshua P" uniqKey="Adams J" first="Joshua P" last="Adams">Joshua P. Adams</name>
</author>
<author>
<name sortKey="No, Kyoungok" sort="No, Kyoungok" uniqKey="No K" first="Kyoungok" last="No">Kyoungok No</name>
</author>
<author>
<name sortKey="Liang, Haiying" sort="Liang, Haiying" uniqKey="Liang H" first="Haiying" last="Liang">Haiying Liang</name>
</author>
<author>
<name sortKey="Meilan, Richard" sort="Meilan, Richard" uniqKey="Meilan R" first="Richard" last="Meilan">Richard Meilan</name>
</author>
<author>
<name sortKey="Pechanova, Olga" sort="Pechanova, Olga" uniqKey="Pechanova O" first="Olga" last="Pechanova">Olga Pechanova</name>
</author>
<author>
<name sortKey="Barakat, Abdelali" sort="Barakat, Abdelali" uniqKey="Barakat A" first="Abdelali" last="Barakat">Abdelali Barakat</name>
</author>
<author>
<name sortKey="Carlson, John E" sort="Carlson, John E" uniqKey="Carlson J" first="John E" last="Carlson">John E. Carlson</name>
</author>
<author>
<name sortKey="Page, Grier P" sort="Page, Grier P" uniqKey="Page G" first="Grier P" last="Page">Grier P. Page</name>
</author>
<author>
<name sortKey="Yuceer, Cetin" sort="Yuceer, Cetin" uniqKey="Yuceer C" first="Cetin" last="Yuceer">Cetin Yuceer</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis Proteins (genetics)</term>
<term>Flowers (genetics)</term>
<term>Flowers (metabolism)</term>
<term>Flowers (physiology)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Plants, Genetically Modified (physiology)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Populus (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Fleurs (génétique)</term>
<term>Fleurs (métabolisme)</term>
<term>Fleurs (physiologie)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Populus (physiologie)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Végétaux génétiquement modifiés (métabolisme)</term>
<term>Végétaux génétiquement modifiés (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Flowers</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Fleurs</term>
<term>Populus</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines végétales</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Flowers</term>
<term>Plant Proteins</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Fleurs</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Fleurs</term>
<term>Populus</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Flowers</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">CONSTANS (CO) is an important flowering-time gene in the photoperiodic flowering pathway of annual Arabidopsis thaliana in which overexpression of CO induces early flowering, whereas mutations in CO cause delayed flowering. The closest homologs of CO in woody perennial poplar (Populus spp.) are CO1 and CO2. A previous report showed that the CO2/FLOWERING LOCUS T1 (FT1) regulon controls the onset of reproduction in poplar, similar to what is seen with the CO/FLOWERING LOCUS T (FT) regulon in Arabidopsis. The CO2/FT1 regulon was also reported to control fall bud set. Our long-term field observations show that overexpression of CO1 and CO2 individually or together did not alter normal reproductive onset, spring bud break, or fall dormancy in poplar, but did result in smaller trees when compared with controls. Transcripts of CO1 and CO2 were normally most abundant in the growing season and rhythmic within a day, peaking at dawn. Our manipulative experiments did not provide evidence for transcriptional regulation being affected by photoperiod, light intensity, temperature, or water stress when transcripts of CO1 and CO2 were consistently measured in the morning. A genetic network analysis using overexpressing trees, microarrays, and computation demonstrated that a majority of functionally known genes downstream of CO1 and CO2 are associated with metabolic processes, which could explain their effect on tree size. In conclusion, the function of CO1 and CO2 in poplar does not appear to overlap with that of CO from Arabidopsis, nor do our data support the involvement of CO1 and CO2 in spring bud break or fall bud set.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23029015</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>02</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Overexpression of CONSTANS homologs CO1 and CO2 fails to alter normal reproductive onset and fall bud set in woody perennial poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>e45448</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0045448</ELocationID>
<Abstract>
<AbstractText>CONSTANS (CO) is an important flowering-time gene in the photoperiodic flowering pathway of annual Arabidopsis thaliana in which overexpression of CO induces early flowering, whereas mutations in CO cause delayed flowering. The closest homologs of CO in woody perennial poplar (Populus spp.) are CO1 and CO2. A previous report showed that the CO2/FLOWERING LOCUS T1 (FT1) regulon controls the onset of reproduction in poplar, similar to what is seen with the CO/FLOWERING LOCUS T (FT) regulon in Arabidopsis. The CO2/FT1 regulon was also reported to control fall bud set. Our long-term field observations show that overexpression of CO1 and CO2 individually or together did not alter normal reproductive onset, spring bud break, or fall dormancy in poplar, but did result in smaller trees when compared with controls. Transcripts of CO1 and CO2 were normally most abundant in the growing season and rhythmic within a day, peaking at dawn. Our manipulative experiments did not provide evidence for transcriptional regulation being affected by photoperiod, light intensity, temperature, or water stress when transcripts of CO1 and CO2 were consistently measured in the morning. A genetic network analysis using overexpressing trees, microarrays, and computation demonstrated that a majority of functionally known genes downstream of CO1 and CO2 are associated with metabolic processes, which could explain their effect on tree size. In conclusion, the function of CO1 and CO2 in poplar does not appear to overlap with that of CO from Arabidopsis, nor do our data support the involvement of CO1 and CO2 in spring bud break or fall bud set.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hsu</LastName>
<ForeName>Chuan-Yu</ForeName>
<Initials>CY</Initials>
<AffiliationInfo>
<Affiliation>Department of Forestry, Mississippi State University, Mississippi State, Mississippi, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Adams</LastName>
<ForeName>Joshua P</ForeName>
<Initials>JP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>No</LastName>
<ForeName>Kyoungok</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liang</LastName>
<ForeName>Haiying</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Meilan</LastName>
<ForeName>Richard</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pechanova</LastName>
<ForeName>Olga</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Barakat</LastName>
<ForeName>Abdelali</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Carlson</LastName>
<ForeName>John E</ForeName>
<Initials>JE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Page</LastName>
<ForeName>Grier P</ForeName>
<Initials>GP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yuceer</LastName>
<ForeName>Cetin</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>09</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035264" MajorTopicYN="N">Flowers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>02</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>08</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23029015</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0045448</ArticleId>
<ArticleId IdType="pii">PONE-D-12-03772</ArticleId>
<ArticleId IdType="pmc">PMC3446887</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 1999 Dec 3;286(5446):1960-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10583960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10756-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Jun 2;288(5471):1613-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10834834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Jun;12(6):885-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10852935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2000 Oct;17(10):1499-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11018156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Dec;12(12):2473-2484</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11148291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Apr;125(4):1821-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11299362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Apr 26;410(6832):1116-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11323677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Apr;26(1):15-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11359606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Dec;28(6):619-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11851908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Aug 1;16(15):2006-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12154129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Sep 19;419(6904):308-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12239570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13313-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12271123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15211-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12393812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Apr 17;422(6933):719-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12700762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Aug;54(389):1879-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12837818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Oct;36(1):82-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12974813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Dec;15(12):2856-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14630968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Feb 13;303(5660):1003-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14963328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2004 Aug;131(15):3615-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15229176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):2271-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Jun 14;65(6):991-1002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1675158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1994 Nov 15;223(1):7-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7535022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Mar 24;80(6):847-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7697715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1996 Nov 7;384(6604):59-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8900276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1996 Aug;12(4):357-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8902363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Dec 15;25(24):4876-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Jun 26;93(7):1219-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9657154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 Sep;56(2):159-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2005;6:62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15780134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2314-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16006582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Aug 12;309(5737):1052-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16099979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Aug 12;309(5737):1056-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16099980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Sep;43(5):758-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16115071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jan;18(1):70-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 May 19;312(5776):1040-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16675663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Aug;18(8):1846-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16844908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 May 18;316(5827):1030-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Jun 19;17(12):1050-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17540569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Jun 19;17(12):1055-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17540570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Oct 12;318(5848):261-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17872410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Mar 1;24(5):719-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18024473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Apr 23;27(8):1277-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18388858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2008 Oct;28(10):1459-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18708327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2009 Feb;47(2):105-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19097801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2009 Aug;230(3):481-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19504268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2009 Aug;28(8):1193-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19495771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20637123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Mar;181(4):808-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Dec 3;286(5446):1962-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10583961</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État du Mississippi</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Adams, Joshua P" sort="Adams, Joshua P" uniqKey="Adams J" first="Joshua P" last="Adams">Joshua P. Adams</name>
<name sortKey="Barakat, Abdelali" sort="Barakat, Abdelali" uniqKey="Barakat A" first="Abdelali" last="Barakat">Abdelali Barakat</name>
<name sortKey="Carlson, John E" sort="Carlson, John E" uniqKey="Carlson J" first="John E" last="Carlson">John E. Carlson</name>
<name sortKey="Liang, Haiying" sort="Liang, Haiying" uniqKey="Liang H" first="Haiying" last="Liang">Haiying Liang</name>
<name sortKey="Meilan, Richard" sort="Meilan, Richard" uniqKey="Meilan R" first="Richard" last="Meilan">Richard Meilan</name>
<name sortKey="No, Kyoungok" sort="No, Kyoungok" uniqKey="No K" first="Kyoungok" last="No">Kyoungok No</name>
<name sortKey="Page, Grier P" sort="Page, Grier P" uniqKey="Page G" first="Grier P" last="Page">Grier P. Page</name>
<name sortKey="Pechanova, Olga" sort="Pechanova, Olga" uniqKey="Pechanova O" first="Olga" last="Pechanova">Olga Pechanova</name>
<name sortKey="Yuceer, Cetin" sort="Yuceer, Cetin" uniqKey="Yuceer C" first="Cetin" last="Yuceer">Cetin Yuceer</name>
</noCountry>
<country name="États-Unis">
<region name="État du Mississippi">
<name sortKey="Hsu, Chuan Yu" sort="Hsu, Chuan Yu" uniqKey="Hsu C" first="Chuan-Yu" last="Hsu">Chuan-Yu Hsu</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002976 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002976 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23029015
   |texte=   Overexpression of CONSTANS homologs CO1 and CO2 fails to alter normal reproductive onset and fall bud set in woody perennial poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23029015" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020